Climate drives intraspecific differentiation in the expression of growth-defence trade-offs in a long-lived pine species

This article was originally published on this site

  • 1.

    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).

    PubMed  Google Scholar 

  • 2.

    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).

    Google Scholar 

  • 3.

    Hahn, P. G. & Maron, J. L. A framework for predicting intraspecific variation in plant defense. Trends Ecol. Evol. 31, 646–656 (2016).

    PubMed  Google Scholar 

  • 4.

    Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78, 23–55 (2003).

    PubMed  Google Scholar 

  • 5.

    Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992).

    Google Scholar 

  • 6.

    Pratt, J. D. & Mooney, K. A. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob. Change Biol. 19, 2454–2466 (2013).

    ADS  Google Scholar 

  • 7.

    Woods, E. C., Hastings, A. P., Turley, N. E., Heard, S. B. & Agrawal, A. A. Adaptive geographical clines in the growth and defense of a native plant. Ecol. Monogr. 82, 149–168 (2012).

    Google Scholar 

  • 8.

    O’Neill, G. A., Aitken, S. N., King, J. N. & Alfaro, R. I. Geographic variation in resin canal defenses in seedlings from the Sitka spruce x white spruce introgression zone. Can. J. For. Res. 32, 390–400 (2002).

    Google Scholar 

  • 9.

    Anderson, J. T., Perera, N., Chowdhury, B. & Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). Am. Nat. 186, S60–S73 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Suárez-Vidal, E. et al. Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ. Exp. Bot. 162, 550–559 (2019).

    Google Scholar 

  • 11.

    Rigling, A., Bruhlhart, H., Braker, O. U., Forster, T. & Schweingruber, F. H. Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For. Ecol. Manag. 175, 285–296 (2003).

    Google Scholar 

  • 12.

    Burghardt, K. T. Nutrient supply alters goldenrod’s induced response to herbivory. Funct. Ecol. 30, 1769–1778 (2016).

    Google Scholar 

  • 13.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 58, 501–517 (2008).

    Google Scholar 

  • 14.

    Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102, 8245–8250 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 105, 11823–11826 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis‐McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).

    PubMed  Google Scholar 

  • 18.

    Alberto, F. J. et al. Potential for evolutionary responses to climate change–evidence from tree populations. Glob. change biol. 19, 1645–1661 (2013).

    ADS  Google Scholar 

  • 19.

    Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214 (2006).

    Google Scholar 

  • 21.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    PubMed  Google Scholar 

  • 22.

    Li, Y., Suontama, M., Burdon, R. D. & Dungey, H. S. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genet. Genomes 13, 60 (2017).

    Google Scholar 

  • 23.

    Herms, D. A. & Mattson, W. J. Does reproduction compromise defense in woody plants? Forest Insect Guilds: Patterns of Interaction with Host Trees. US Department of Agriculture, Forest Service, General Technical Report NE-153, 35–46 (1991).

  • 24.

    Agrawal, A. A. Current trends in the evolutionary ecology of plant defence. Funct. Ecol. 25, 420–432 (2011).

    Google Scholar 

  • 25.

    Agrawal, A. A., Conner, J. K. & Rasmann, S. Tradeoffs and negative correlations in evolutionary ecology in Evolution since Darwin: the first 150 years Vol. 150 (eds. Bell, M.A., Futuyma, D. J., Eanes, W. F., & Levinton, J. S.) 243–268 (Sinauer Associates, Inc, 2010).

  • 26.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Endara, M. J. & Coley, P. D. The resource availability hypothesis revisited: a meta‐analysis. Funct. Ecol. 25, 389–398 (2011).

    Google Scholar 

  • 28.

    Sampedro, L., Moreira, X. & Zas, R. Costs of constitutive and herbivore‐induced chemical defences in pine trees emerge only under low nutrient availability. J. Ecol. 99, 818–827 (2011).

    Google Scholar 

  • 29.

    Abdala‐Roberts, L., Moreira, X., Cervera, J. C. & Parra‐Tabla, V. Light availability influences growth‐defense trade‐offs in big‐leaf mahogany (Swietenia macrophylla King). Biotropica 46, 591–597 (2014).

    Google Scholar 

  • 30.

    Agrawal, A. A. A scale‐dependent framework for trade‐offs, syndromes, and specialization in organismal biology. Ecology 101, e02924 (2020).

    PubMed  Google Scholar 

  • 31.

    Celedon, J. M. & Bohlmann, J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. N. Phytol. 224, 1444–1463 (2019).

    CAS  Google Scholar 

  • 32.

    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. N. Phytol. 167, 353–376 (2005).

    CAS  Google Scholar 

  • 33.

    Ferrenberg, S., Kane, J. M. & Mitton, J. B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174, 1283–1292 (2014).

    ADS  PubMed  Google Scholar 

  • 34.

    Kane, J. M. & Kolb, T. E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164, 601–609 (2010).

    ADS  PubMed  Google Scholar 

  • 35.

    Hood, S., Sala, A., Heyerdahl, E. K. & Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 96, 1846–1855 (2015).

    PubMed  Google Scholar 

  • 36.

    Zhao, S. & Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant. Sci. 10, 1459 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Fritts, H. Tree rings and climate. (Academic Press, 1976).

  • 38.

    Hahn, P. G., Agrawal, A. A., Sussman, K. I. & Maron, J. L. Population variation, environmental gradients, and the evolutionary ecology of plant defense against herbivory. Am. Nat. 193, 20–34 (2018).

    PubMed  Google Scholar 

  • 39.

    Zas, R. et al. Intraspecific variation of anatomical and chemical defensive traits in Maritime pine (Pinus pinaster) as factors in susceptibility to the pinewood nematode (Bursaphelenchus xylophilus). Trees-struct. funct. 29, 663–673 (2015).

    Google Scholar 

  • 40.

    Vázquez-González, C., López-Goldar, X., Zas, R. & Sampedro, L. Neutral and climate-driven adaptive processes contribute to explain population variation in resin duct traits in a Mediterranean pine species. Front. Plant. Sci. 10, 01613 (2019).

    Google Scholar 

  • 41.

    Gaylord, M. L. et al. Drought predisposes pinon-juniper woodlands to insect attacks and mortality. N. Phytol. 198, 567–578 (2013).

    CAS  Google Scholar 

  • 42.

    Moreira, X., Zas, R., Solla, A. & Sampedro, L. Differentiation of persistent anatomical defensive structures is costly and determined by nutrient availability and genetic growth-defence constraints. Tree Physiol. 35, 112–123 (2015).

    CAS  PubMed  Google Scholar 

  • 43.

    Lo, Y.-H., Blanco, J. A., Seely, B., Welham, C. & Kimmins, J. H. Relationships between climate and tree radial growth in interior British Columbia, Canada. For. Ecol. Manag. 259, 932–942 (2010).

    Google Scholar 

  • 44.

    Lebourgeois, F. Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann. For. Sci. 57, 155–164 (2000).

    Google Scholar 

  • 45.

    Domec, J. C. & Gartner, B. L. How do water transport and water storage differ in coniferous earlywood and latewood? J. Exp. Bot. 53, 2369–2379 (2002).

    CAS  PubMed  Google Scholar 

  • 46.

    Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees-struct. funct. 14, 409–414 (2000).

    Google Scholar 

  • 47.

    Wimmer, R. & Grabner, M. Effects of climate on vertical resin duct density and radial growth of Norway spruce Picea abies (L) Karst. Trees-struct. funct. 11, 271–276 (1997).

    Google Scholar 

  • 48.

    Wu, H. & Hu, Z. H. Comparative anatomy of resin ducts of the Pinaceae. Trees-struct. funct. 11, 135–143 (1997).

    Google Scholar 

  • 49.

    Rosner, S. & Hannrup, B. Resin canal traits relevant for constitutive resistance of Norway spruce against bark beetles: environmental and genetic variability. For. Ecol. Manag. 200, 77–87 (2004).

    Google Scholar 

  • 50.

    Westbrook, J. W. et al. Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. N. Phytol. 199, 89–100 (2013).

    CAS  Google Scholar 

  • 51.

    Saracino, A. et al. Climatic signal from Pinus leucodermis axial resin ducts: a tree-ring time series approach. Eur. J. For. Res. 136, 27–36 (2017).

    Google Scholar 

  • 52.

    Hood, S. & Sala, A. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol. 35, 1223–1235 (2015).

    PubMed  Google Scholar 

  • 53.

    Klutsch, J. G. & Erbilgin, N. Dwarf mistletoe infection in jack pine alters growth–defense relationships. Tree Physiol. 38, 1538–1547 (2018).

    CAS  PubMed  Google Scholar 

  • 54.

    Mason, C. J. et al. Anatomical defenses against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defenses within trees. Plant. Cell Environ. 42, 633–646 (2019).

    CAS  PubMed  Google Scholar 

  • 55.

    Redmond, M. D., Davis, T. S., Ferrenberg, S. M. & Wion, A. P. Resource allocation trade-offs in a mast-seeding conifer: Piñon pine prioritizes reproduction over defense. AoB PLANTS 11(6), plz070 (2019).

    Google Scholar 

  • 56.

    Alía, R., Gil, L. & Pardos, J. Performance of 43 Pinus pinaster Ait. provenances on 5 locations in central Spain. Silvae Genet. 44, 75–80 (1995).

    Google Scholar 

  • 57.

    Abad Viñas, R., Caudullo, G., Oliveira, S. & de Rigo, D. Pinus pinaster in Europe: distribution, habitat, usage and threats in European Atlas of Forest Tree Species (Publi. Off. EU, Luxemburg) e012d59 (2016).

  • 58.

    Jaramillo-Correa, J.-P. et al. Molecular proxies for climate maladaptation in a long-lived tree (Pinus pinaster Aiton, Pinaceae). Genetics 199, 793–807 (2015).

    PubMed  Google Scholar 

  • 59.

    Bucci, G. et al. Range‐wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol. Ecol. 16, 2137–2153 (2007).

    CAS  PubMed  Google Scholar 

  • 60.

    Arrabal, C., Cortijo, M., de Simón, B. F., Vallejo, M. C. G. & Cadahía, E. Differentiation among five Spanish Pinus pinaster provenances based on its oleoresin terpenic composition. Biochem. Syst. Ecol. 33, 1007–1016 (2005).

    CAS  Google Scholar 

  • 61.

    Correia, I. et al. Variations in growth, survival and carbon isotope composition (δ13C) among Pinus pinaster populations of different geographic origins. Tree Physiol. 28, 1545–1552 (2008).

    PubMed  Google Scholar 

  • 62.

    Santos-del-Blanco, L., Climent, J., González-Martínez, S. & Pannell, J. Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster. Ann. Bot. 110, 1449–1460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS One 9, e105992 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Alía, R., Serrano, J. M. & Denis, J. Ensayos de procedencias de Pinus pinaster Ait. en el centro de España: resultados a la edad de 32 años. Invest. Agrar. Sist. Recur. For. 10, 333–354 (2001).

  • 65.

    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bul. 43, 69–78 (1983).

    Google Scholar 

  • 66.

    Biondi, F. & Qeadan, F. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81–97 (2008).

    Google Scholar 

  • 67.

    Gonzalo, J. Phytoclimatic analysis of the Spanish Peninsula: update and geostatistical analysis, PhD Thesis, University of Valladolid, Palencia, Spain, (2008).

  • 68.

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Google Scholar 

  • 69.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82 (2017).

  • 70.

    Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).

    Google Scholar 

  • 71.

    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2016).

  • 72.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2014).